本文共 15534 字,大约阅读时间需要 51 分钟。
import numpy as np
print(np.__version__)print(np.show_config())
Z = np.zeros(10)print(Z)
Z = np.zeros((10,10))print("%d bytes" % (Z.size * Z.itemsize)) import numpy as npnp.info(np.add)
Z = np.zeros(10)Z[4] = 1print(Z)
Z = np.arange(10,50)print(Z)
Z = np.arange(50)Z = Z[::-1]print(Z)
Z = np.arange(9).reshape(3,3)print(Z)
nz = np.nonzero([1,2,0,0,4,0])print(nz)
Z = np.eye(3)print(Z)
Z = np.random.random((3,3,3))print(Z)
Z = np.random.random((10,10))Zmin, Zmax = Z.min(), Z.max()print(Zmin, Zmax)
Z = np.random.random(30)m = Z.mean()print(m)
Z = np.ones((10,10))Z[1:-1,1:-1] = 0print(Z)
Z = np.ones((5,5))Z = np.pad(Z, pad_width=1, mode='constant', constant_values=0)print(Z)
print(0 * np.nan) # nanprint(np.nan == np.nan) # Falseprint(np.inf > np.nan) # Falseprint(np.nan - np.nan) # nanprint(0.3 == 3 * 0.1) # False
Z = np.diag(1 + np.arange(4), k=-1)print(Z)
Z = np.zeros((8,8), dtype=int)Z[1::2,::2] = 1Z[::2,1::2] = 1print(Z)
print(np.unravel_index(100, (6,7,8)))
Z = np.tile(np.array([[0,1],[1,0]]), (4,4))print(Z)
Z = np.random.random((5,5))Zmax, Zmin = Z.max(), Z.min()Z = (Z - Zmin)/(Zmax - Zmin)print(Z)
color = np.dtype([("r", np.ubyte, 1), ("g", np.ubyte, 1), ("b", np.ubyte, 1), ("a", np.ubyte, 1)])print(color) Z = np.dot(np.ones((5,3)), np.ones((3,2)))print(Z)
Z = np.arange(11)Z[(3 < Z) & (Z <= 8)] *= -1print(Z)
print(sum(range(5), -1)) # 9
Z**Z # True2 << Z > 2 # FalseZ << Z # True1j*Z # TrueZ / 1 / 1 # TrueZ # False
np.array(0) / np.array(0) # nannp.array([np.nan]).astype(int).astype(float) # -2.14748365e+09
Z = np.random.uniform(-10, 10, 10)print(np.copysign(np.ceil(np.abs(Z)), Z))
Z1 = np.random.randint(0, 10, 10)Z2 = np.random.randint(0, 10, 10)print(np.intersect1d(Z1, Z2))
ondefaults = np.seterr(all="ignore")Z = np.ones(1) / 0# Back to sanity_ = np.seterr(**defaults)
np.sqrt(-1) == np.emath.sqrt(-1) # False
yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D')today = np.datetime64('today', 'D')tomorrow = today + np.timedelta64(1, 'D')print(yesterday, today, tomorrow) Z = np.arange('2016-07', '2016-08', dtype='datetime64[D]')print(Z) A = np.ones(3) * 1B = np.ones(3) * 1C = np.ones(3) * 1np.add(A, B, out=C)np.divide(A, 2, out=A)np.negative(A, out=A)np.multiply(A, B, out=A)print(A)
Z = np.random.uniform(0, 10, 10)print(Z - Z % 1)print(np.floor(Z))print(np.ceil(Z) - 1)print(Z.astype(int))print(np.trunc(Z))
Z = np.zeros((5, 5))Z += np.arange(5)print(Z)
def generate(): for x in range(10): yield xZ = np.fromiter(generate(), dtype=float, count=-1)print(Z)
Z = np.linspace(0, 1, 12)[1:-1]print(Z)
Z = np.random.random(10)Z.sort()print(Z)
Z = np.arange(10)np.add.reduce(Z)
A = np.random.randint(0, 2, 5)B = np.random.randint(0, 2, 5)equal = np.allclose(A, B)print(equal)equal = np.array_equal(A, B)print(equal)
Z = np.zeros(5)Z.flags.writeable = FalseZ[0] = 1
Z = np.random.random((10, 2))X, Y = Z[:, 0], Z[:, 1]R = np.sqrt(X**2 + Y**2)T = np.arctan2(Y, X)print(R)print(T)
Z = np.random.random(10)Z[Z.argmax()] = 0print(Z)
Z = np.zeros((5,5), [('x', float, 1), ('y', float, 1)])Z['x'], Z['y'] = np.meshgrid(np.linspace(0, 1, 5), np.linspace(0, 1, 5))print(Z) X = np.arange(8)Y = X + 0.5C = 1.0 / np.subtract.outer(X, Y)print(C)print(np.linalg.det(C))
for dtype in [np.int8, np.int32, np.int64]: print(np.iinfo(dtype).min) print(np.iinfo(dtype).max)for dtype in [np.float32, np.float64]: print(np.finfo(dtype).min) print(np.finfo(dtype).max) print(np.finfo(dtype).eps)
np.set_printoptions(threshold=np.nan)Z = np.zeros((16,16))print(Z)
Z = np.arange(100)v = np.random.uniform(0, 100)index = (np.abs(Z - v)).argmin()print(Z[index])
Z = np.zeros(10, [('position', [('x', float, 1), ('y', float, 1)]), ('color', [('r', float, 1), ('g', float, 1), ('b', float, 1)])])print(Z) Z = np.random.random((100, 2))X, Y = np.atleast_2d(Z[:, 0], Z[:, 1])D = np.sqrt((X - X.T)**2 + (Y - Y.T)**2)print(D)
Z = np.arange(10, dtype=np.int32)Z = Z.astype(np.float32, copy=False)print(Z)
'''1, 2, 3, 4, 56, , , 7, 8 , , , 9,10,11'''# 保存到example.txt中Z = np.genfromtxt("example.txt", delimiter=",")print(Z) Z = np.arange(9).reshape(3,3)for index, value in np.ndenumerate(Z): print(index, value)for index in np.ndindex(Z.shape): print(index, Z[index])
X, Y = np.meshgrid(np.linspace(-1, 1, 10), np.linspace(-1, 1, 10))D = np.sqrt(X**2 + Y**2)sigma, mu = 1.0, 0.0G = np.exp(-( (D - mu)**2 / (2.0*sigma**2) ))print(G)
n = 10p = 3Z = np.zeros((n,n))np.put(Z, np.random.choice(range(n*n), p, replace=False), 1)print(Z)
X = np.random.rand(5, 10)Y = X - X.mean(axis=1, keepdims=True)print(Y)
Z = np.random.randint(0,10,(3,3))print(Z)print(Z[ Z[:,1].argsort() ])
Z = np.random.randint(0,3,(3,10))print((~Z.any(axis=0)).any())
Z = np.random.uniform(0,1,10)z = 0.5m = Z.flat[np.abs(Z - z)].argmin()print(m)
A = np.arange(3).reshape(3, 1)B = np.arange(3).reshape(1, 3)it = np.nditer([A, B, None])for x, y, z in it: z[...] = x + yprint(it.operands[2])
class NameArray(np.ndarray): def __new__(cls, array, name="no name"): obj = np.asarray(array).view(cls) obj.name = name return obj def __array_finalize__(self, obj): if obj is None: return self.info = getattr(obj, 'name', "no name")Z = NameArray(np.arange(10), "range_10")print(Z.name)
Z = np.ones(10)I = np.random.randint(0, len(Z), 20)Z += np.bincount(I, minlength=len(Z))print(Z)# 另一个解决方案np.add.at(Z, I, 1)print(Z)
X = [1,2,3,4,5,6]I = [1,3,9,3,4,1]F = np.bincount(I, X)print(F)
w, h = 16,16I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)F = I[...,0]*256*256 + I[...,1]*256 + I[...,2]n = len(np.unique(F))print(np.unique(I))
A = np.random.randint(0,10,(3,4,3,4))sum = A.sum(axis=(-2,-1))print(sum)# 将最后两个维度压缩为一个sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)print(sum)
D = np.random.uniform(0,1,100)S = np.random.randint(0,10,100)D_sums = np.bincount(S, weights=D)D_counts = np.bincount(S)D_means = D_sums / D_countsprint(D_means)# Pandas解决方案作为参考import pandas as pdprint(pd.Series(D).groupby(S).mean())
A = np.random.uniform(0,1,(5,5))B = np.random.uniform(0,1,(5,5))# 慢速版本np.diag(np.dot(A, B))# 快速版本np.sum(A * B.T, axis=1)# 更快版本np.einsum("ij,ji->i", A, B)print(np.diag(np.dot(A, B))) Z = np.array([1,2,3,4,5])nz = 3Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))Z0[::nz+1] = Zprint(Z0)
A = np.ones((5,5,3))B = 2 * np.ones((5,5))print(A * B[:,:,None])
A = np.arange(25).reshape(5,5)A[[0,1]] = A[[1,0]]print(A)
faces = np.random.randint(0,100,(10,3))F = np.roll(faces.repeat(2,axis=1),-1,axis=1)F = F.reshape(len(F)*3,2)F = np.sort(F,axis=1)G = F.view(dtype=[('p0',F.dtype),('p1',F.dtype)])G = np.unique(G)print(G) C = np.bincount([1,1,2,3,4,4,6])A = np.repeat(np.arange(len(C)), C)print(A)
def moving_average(a, n=3): ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n-1:]Z = np.arange(20)print(moving_average(Z, n=3))
from numpy.lib import stride_tricksdef rolling(a, window): shape = (a.size - window + 1, window) strides = (a.itemsize, a.itemsize) return stride_tricks.as_strided(a, shape=shape, strides=strides)Z = rolling(np.arange(10), 3)print(Z)
Z = np.random.randint(0,2,100)np.logical_not(Z, out=Z)Z = np.random.uniform(-1.0,1.0,100)np.negative(Z, out=Z)print(Z)
def distance(P0, P1, p): T = P1 - P0 L = (T**2).sum(axis=1) U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L U = U.reshape(len(U),1) D = P0 + U*T - p return np.sqrt((D**2).sum(axis=1))P0 = np.random.uniform(-10,10,(10,2))P1 = np.random.uniform(-10,10,(10,2))p = np.random.uniform(-10,10,(1,2))print(distance(P0, P1, p))
P0 = np.random.uniform(-10, 10, (10,2))P1 = np.random.uniform(-10,10,(10,2))p = np.random.uniform(-10, 10, (10,2))print(np.array([distance(P0, P1, p_i) for p_i in p]))
Z = np.random.randint(0,10,(10,10))shape = (5,5)fill = 0position = (1,1)R = np.ones(shape, dtype=Z.dtype)*fillP = np.array(list(position)).astype(int)Rs = np.array(list(R.shape)).astype(int)Zs = np.array(list(Z.shape)).astype(int)R_start = np.zeros((len(shape),)).astype(int)R_stop = np.array(list(shape)).astype(int)Z_start = (P - Rs//2)Z_stop = (P + Rs//2) + Rs%2R_start = (R_start - np.minimum(Z_start,0)).tolist()Z_start = (np.maximum(Z_start,0)).tolist()R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()Z_stop = (np.minimum(Z_stop, Zs)).tolist()r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]R[r] = Z[z]print(Z)print(R)
Z = np.arange(1,15,dtype=np.uint32)R = stride_tricks.as_strided(Z,(11,4),(4,4))print(R)
Z = np.random.uniform(0,1,(10,10))U, S, V = np.linalg.svd(Z)rank = np.sum(S > 1e-10)print(rank)
Z = np.random.randint(0,10,50)print(np.bincount(Z).argmax())
Z = np.random.randint(0,5,(10,10))n = 3i = 1 + (Z.shape[0]-3)j = 1 + (Z.shape[1]-3)C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)print(C)
class Symetric(np.ndarray): def __setitem__(self, index, value): i,j = index super(Symetric, self).__setitem__((i,j), value) super(Symetric, self).__setitem__((j,i), value)def symetric(Z): return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)S = symetric(np.random.randint(0,10,(5,5)))S[2,3] = 42print(S)
p, n = 10, 20M = np.ones((p,n,n))V = np.ones((p,n,1))S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])print(S)
Z = np.ones((16,16))k = 4S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0), np.arange(0, Z.shape[1], k), axis=1)print(S)
def iterate(Z): # Count neighbours N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] + Z[1:-1,0:-2] + Z[1:-1,2:] + Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:]) # Apply rules birth = (N==3) & (Z[1:-1,1:-1]==0) survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1) Z[...] = 0 Z[1:-1,1:-1][birth | survive] = 1 return ZZ = np.random.randint(0,2,(50,50))for i in range(100): Z = iterate(Z)print(Z)
Z = np.arange(10000)np.random.shuffle(Z)n = 5print(Z[np.argsort(Z)[-n:]]) # Slowprint(Z[np.argpartition(-Z, n)[:n]]) # Fast
def cartesian(arrays): arrays = [np.asarray(a) for a in arrays] shape = (len(x) for x in arrays) ix = np.indices(shape, dtype=int) ix = ix.reshape(len(arrays), -1).T for n, arr in enumerate(arrays): ix[:, n] = arrays[n][ix[:, n]] return ixprint(cartesian(([1, 2, 3], [4, 5], [6, 7])))
Z = np.array([("Hello", 2.5, 3), ("World", 3.6, 2)])R = np.core.records.fromarrays(Z.T, names='col1, col2, col3', formats = 'S8, f8, i8')print(R) x = np.random.rand(5e7)%timeit np.power(x,3)%timeit x*x*x%timeit np.einsum('i,i,i->i', x, x, x) A = np.random.randint(0,5,(8,3))B = np.random.randint(0,5,(2,2))C = (A[..., np.newaxis, np.newaxis] == B)rows = np.where(C.any((3,1)).all(1))[0]print(rows)
Z = np.random.randint(0,5,(10,3))print(Z)# solution for arrays of all dtypes (including string arrays and record arrays)E = np.all(Z[:,1:] == Z[:,:-1], axis=1)U = Z[~E]print(U)# solution for numerical arrays only, will work for any number of columns in ZU = Z[Z.max(axis=1) != Z.min(axis=1),:]print(U)
I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)print(B[:,::-1])I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)print(np.unpackbits(I[:, np.newaxis], axis=1))
Z = np.random.randint(0,2,(6,3))T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))_, idx = np.unique(T, return_index=True)uZ = Z[idx]print(uZ)
A = np.random.uniform(0,1,10)B = np.random.uniform(0,1,10)np.einsum('i->', A) # np.sum(A)np.einsum('i,i->i', A, B) # A * Bnp.einsum('i,i->i', A, B) # np.inner(A, B)np.einsum('i,j->ij', A, B) # np.outer(A, B) phi = np.arange(0, 10*np.pi, 0.1)a = 1x = a*phi*np.cos(phi)y = a*phi*np.sin(phi)dr = (np.diff(x)**2 + np.diff(y)**2)**0.5r = np.zeros_like(x)r[1:] = np.cumsum(dr)r_int = np.linspace(0, r.max(), 200)x_int = np.interp(r_int, r, x)y_int = np.interp(r_int, r, y)print(x_int)print(y_int)
X = np.asarray([[1.0, 0.0, 3.0, 8.0], [2.0, 0.0, 1.0, 1.0], [1.5, 2.5, 1.0, 0.0]])n = 4M = np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1)M &= (X.sum(axis=-1) == n)print(X[M])
X = np.random.randn(100)N = 1000idx = np.random.randint(0, X.size, (N, X.size))means = X[idx].mean(axis=1)confint = np.percentile(means, [2.5, 97.5])print(confint)
转载地址:http://twnfk.baihongyu.com/